exterior$26903$ - significado y definición. Qué es exterior$26903$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es exterior$26903$ - definición

IN DIFFERENTIAL GEOMETRY, A DIFFERENTIAL OPERATION DEFINED IN DIFFERENTIAL FORMS THAT INCREASES THE FORM DEGREE BY 1
Exterior differentiation; Invariant formula for exterior derivative

Exterior derivative         
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899.
Exterior space         
User:Jmgarcal/Exterior spaces; Wikipedia talk:Articles for creation/Exterior spaces; Exterior spaces
In mathematics, the notion of externology in a topological space X generalizes the basic properties of the family
Radiodifusión Argentina al Exterior         
INTERNATIONAL SERVICE OF THE ARGENTINE PUBLIC RADIO-TELEVISION
Radiodifusion Argentina al Exterior; RAE Argentina al Mundo
RAE Argentina al Mundo (), previously known as Radiodifusión Argentina al Exterior or RAE, is Argentina's state-owned international broadcaster, which uses shortwave, satellite and the Internet.

Wikipedia

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.